Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Chem ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742401

RESUMO

We show herein that 1,10-dicyano substitution restricts the paragon fluxionality of bullvalene to just 14 isomers which isomerize along a single cycle. The restricted fluxionality of 1,10-dicyanobullvalene (DCB) is investigated by means of: (i) Bonding analyses of the isomer structures using the adaptive natural density partitioning (AdNDP). (ii) Quantum dynamical simulations of the isomerizations along the cyclic intrinsic reaction coordinate of the potential energy surface (PES). The PES possesses 14 equivalent potential wells supporting 14 isomers which are separated by 14 equivalent potential barriers supporting 14 transition states. Accordingly, at low temperatures, DCB appears as a hindered molecular rotor, without any delocalization of the wavefunction in the 14 potential wells, without any nuclear spin isomers, and with completely negligible tunneling. These results are compared and found to differ from those for molecular boron rotors. (iii) Born-Oppenheimer molecular dynamics (BOMD) simulations of thermally activated isomerizations. (iv) Calculations of the rate constants in the frame of transition state theory (TST) with reasonable agreement achieved with the BOMD results. (v) Simulations of the equilibration dynamics using rate equations for the isomerizations with TST rate coefficients. Accordingly, in the long-time limit, isomerizations of the 14 isomers, each with Cs symmetry, approach the "14 Cs → C7v" thermally averaged structure. This is a superposition of the 14 equally populated isomer structures with an overall C7v symmetry. By extrapolation, the results for DCB yield working hypotheses for so far un-explored properties e.g. for the equilibration dynamics of C10H10.

2.
Sci Rep ; 12(1): 19741, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36396964

RESUMO

Boron and boron-based nanoclusters exhibit unique structural and bonding patterns in chemistry. Extensive density functional theory calculations performed in this work predict the mononuclear walnut-like Ci C50B54 (1) (C2B10@C48B44), C1 C50B54 (2) (CB11@C49B43), and S10 C50B54 (3) (B12@C50B42) which contain one icosahedral-CnB12-n core (n = 0, 1, 2) at the center following the Wade's skeletal electron counting rules and the approximately electron sufficient binuclear peanut-like Cs C88B78 (4) ((C2B10)2@C84B58), Cs C88B78 (5) ((CB11)2@C86B56), Cs C88B78 (6) ((B12)2@C88B54), Cs B180 (7) ((B12)2@B156), Cs B182 (8) ((B12)2@B158), and Cs B184 (9) ((B12)2@B160) which encapsulate two interconnected CnB12-n icosahedrons inside. These novel core-shell borafullerene and borospherene nanoclusters appear to be the most stable species in thermodynamics in the corresponding cluster size ranges reported to date. Detailed bonding analyses indicate that the icosahedral B122-, CB11-, and C2B10 cores in these core-shell structures possess the superatomic electronic configuration of 1S21P61D101F8, rendering spherical aromaticity and extra stability to the systems. Such superatomic icosahedral-CnB12-n stuffed borafullerenes and borospherenes with spherical aromaticity may serve as embryos to form bulk boron allotropes and their carbon-boron binary counterparts in bottom-up approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...